Effect of hyperconjugation on ionization energies of hydroxyalkyl radicals.

نویسندگان

  • Boris Karpichev
  • Hanna Reisler
  • Anna I Krylov
  • Kadir Diri
چکیده

On the basis of electronic structure calculations and molecular orbital analysis, we offer a physical explanation of the observed large decrease (0.9 eV) in ionization energies (IE) in going from hydroxymethyl to hydroxyethyl radical. The effect is attributed to hyperconjugative interactions between the sigma CH orbitals of the methyl group in hydroxyethyl, the singly occupied p orbital of carbon, and the lone pair p orbital of oxygen. Analyses of vertical and adiabatic IEs and hyperconjugation energies computed by the natural bond orbital (NBO) procedure reveal that the decrease is due to the destabilization of the singly occupied molecular orbital in hydroxyethyl radical as well as structural relaxation of the cation maximizing the hyperconjugative interactions. The stabilization is achieved due to the contraction of the CO and CC bonds, whereas large changes in torsional angles bear little effect on the total hyperconjugation energies and, consequently, IEs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Investigation, Proton and Electron Affinities, Gas Phase Basicities, and Ionization Energies of Captopril

Captopril is one of the most significant angiotensin-converting enzyme inhibitors. In spite of numerous experimental and computational studies on its properties, not enough geometrical and thermodynamic data is available on this compound. So, this study aimed to investigate the structural properties and assignment of possible conformers of captopril in the gas-phase. To this end, 1152 unique tr...

متن کامل

Electron spin resonance studies of hyperconjugation in 2,3-, 2,6-, and 2,7-dimethylanthracene cation and anion radicals

The Journal of Physical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Electron spin resonance studies of hyperconjugation in 2,3-, 2,6-, and 2,7-dimethylanthracene cation and anion radicals Jorge A. Valenzuela, and Allen J. Bard J. Phys. Chem., 1969, 73 (4), 779-788• DOI: 10.1021/j100724a004 • Publication Date (Web): 01 May 2002 Downlo...

متن کامل

Hyperconjugation in diethyl ether cation versus diethyl sulfide cation.

Ionization of a molecule can greatly alter its electronic structure as well as its geometric structure. In this collaborative experimental and theoretical study, we examined variance in hyperconjugation upon ionization of diethyl ether (DEE) and diethyl sulfide (DES). We obtained the experimental gas phase vibrational spectra of DEE, DES, DEE(+), DES(+), DEE(+)-Ar, and DES(+)-Ar in the wavenumb...

متن کامل

Isomeric product detection in the heterogeneous reaction of hydroxyl radicals with aerosol composed of branched and linear unsaturated organic molecules.

The influence of molecular structure (branched vs linear) on product formation in the heterogeneous oxidation of unsaturated organic aerosol is investigated. Particle phase product isomers formed from the reaction of squalene (C30H50, a branched alkene with six C═C double bonds) and linolenic acid (C18H30O2, a linear carboxylic acid with three C═C double bonds) with OH radicals are identified a...

متن کامل

The OH-initiated oxidation of 1,3-butadiene in the presence of O2 and NO: a photolytic route to study isomeric selective reactivity.

We report the study of the isomeric selective OH-initiated oxidation of 1,3-butadiene in the presence of O2 and NO using the LP/LIF technique. The photolysis of monodeuterated 1-iodo-3-buten-2-ol provides only one of the possible OD-butadiene adducts, the minor addition channel product, simplifying the oxidation mechanism. We find, based on analysis of OD time-dependent traces that prompt rearr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 112 40  شماره 

صفحات  -

تاریخ انتشار 2008